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A method is proposed for investigating complex dynamic mechanisms with the use of a sequence of differen-
tial operators, which allows one to by pass cumbersome mathematical calculations, transform the system of
three coupled differential equations of the second order into system of three independent linear inhomogene-
ous differential equations of the sixth order with constant coefficients, and represent the laws of influence of
the physical parameters of a mechanical system on its dynamic properties in a simple analytical form. The
indicated method can be used for investigating the vibrations of passive vibration dampers as well as their
vibration resistance and quality and can be extended to other linear and linearized mechanical vibratory sys-
tems of higher orders.

Methods of analysis of the vibrations of mechanical systems have found wide use in modern machine building
for designing vibration dampers, vibration isolators, and restraining arms used in overstressed mobile machines, avia-
tion equipment, subway rolling stocks, trains, and machine tools. One of this methods is the method of chain dynamic
systems or total mechanical resistance — impedance [1]. However, the indicated method is based on a simplified
mathematical model of the dynamic and kinematic parameters of an actual object, which breaks the logic of dynamic
processes and the Newtonian mechanics laws [2]. Another method of investigating vibratory systems, which most reli-
ably accounts for their physical properties, is the method of amplitude-frequency characteristics [3]. The essence of this
method is that the dynamics of a complex mechanical object is adequately defined by a system of linear differential
equations solved using the integral Laplace transform, which makes it possible to analyze a mechanical system can be
analyzed with the use of transfer functions and frequency characteristics and obtain the desired solutions using Rie-
mann–Mellin formulas; however, this is frequently different to realize.

In the present work we propose a method of investigating vibratory systems defined by linear and linearized
equations [4–7] with a large number of unknown variables, which allows one to transform coupled second-order dif-
ferential equations into independent linear inhomogeneous differential equations, to solve them exactly, and to obtain a
characteristic polynomial, and to determine the amplitude-frequency characteristics and transfer functions of a system
and its vibration resistance, quality, and vibration-resistance margin.

As a vibratory system, we will consider a passive uniaxial vibration isolator used in mobile machines. The
physical properties of the materials of passive dampers do not change with time unlike the properties of the materials
of active dampers containing electrorheological or marnetorheological liquids. The isolator considered consists of metal
springs, silent units, rubber-metal shock absorbers, and hydraulic supports. Such mechanisms are designed with the use
of the simple elastic and damping elements, the properties of which depend linearly on their vibrations and the speed
of these vibrations. The vibration isolator, the general dynamic diagram of which is presented in Fig. 1, can be defined
by the system of four coupled inhomogeneous differential equations with indivisible variables
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where b00 = (b1 + b4 + b6)/m0, b01 = b1
 ⁄ m0, b02 = b4
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 ⁄ m3, c33 = (c2 + c3 + c6)/m3, f(t)  = a sin ωt, a = A ⁄ m0, f1 = F1
 ⁄ m1, f2 =

F2
 ⁄ m2, f3 = F3

 ⁄ m3, and Fi = 0 for all i = 1, 3. In the vibroisolation system presented in Fig. 1, m0 represents a
rigid base with a mass exceeding, in the physical equivalent, the other parameters: m0 → ∞; in this case, x

..
 = a sin

ωt, x
.
0 = −(a ⁄ ω) cos ωt, and x0 = −(a ⁄ ω2) sin ωt. In this connection the mathematical model of mechanical vibra-

tions (1)–(4) becomes simpler:
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where F1 = f1 − (a ⁄ ω2)c10 sin ωt − (a ⁄ ω)b10 cos ωt, F2 = f2 − (a ⁄ ω2)c20 sin ωt − (a ⁄ ω)b20 cos ωt, and F3 =
f3 − (a ⁄ ω2)c30 sin ωt − (a ⁄ ω)b30 cos ωt.

Equations of this type are frequently used in mechanics for determining the vibrations of a ship, a ship gyro-
scope, frictionally coupled vibratory systems, a horizontal pendulum, and vibration-isolated objects. It is impossible to

Fig. 1. General dynamic system of vibration isolation.
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integrate the indicated system of differential equations in the general form. It can be solved in the case where the right
sides of these equations are specially selected and the coefficients bij and cij satisfy certain conditions (i = 1, 2; j =
1, 2) [4]. Modern computer means make it possible to obtain numerical results only for small time intervals and con-
crete parameters of the problem, by which the influence of the coefficients on the total vibrational process cannot be
judged. The discrepancy of the system of differential equations (5)–(7) results in errors appearing and the calculations
are terminated for a limiting number of steps. A problem of system (5)–(7) is the connection of variables and of their
first and second derivatives. Let us separate the derivatives, using the operation of repeated differentiation, which is
not contrary to the Peano existence and uniqueness theorem [4]. For this purpose, we will separate the following dif-
ferential operators of the second and first orders from the system of equations (5)–(7):

L1 = 
d

2

dt
2 + b11 

d

dt
 + c11 ,   L2 = 

d
2

dt
2 + b22 

d

dt
 + c22 ,   L3 = 

d
2

dt
2 + b33 

d

dt
 + c33 , (8)

d12 = b12 
d
dt

 + c12 ,   d13 = b13 
d
dt

 + c13 ,   d21 = b21 
d
dt

 + c21 ,

d23 = b23 
d
dt

 + c23 ,   d31 = b31 
d
dt

 + c31 , d32 = b32 
d
dt

 + c32 . (9)

The dynamic system of vibration isolation (5)–(7) can be represented in the form

L1 (x1) = d12 (x2) + d13 (x3) + F1 , (10)

L2 (x2) = d21 (x1) + d23 (x3) + F2 , (11)

L3 (x3) = d31 (x1) + d32 (x2) + F3 . (12)

We successively applied the operators Li (i = 1, 3
___

) to the differential equations (10)–(12) in relation to the
variables xi and obtained a new system of three independent sixth-order differential equations. The left sides of these
equations have identical coefficients because of the invariance of the differential operators (8) and (9) used:

D
6
 (xi) = L1L2L3 (xi) − L1d23d32 (xi) − L2d13d31 (xi) −

− L3d12d21 (xi) − d12d23d31 (xi) − d13d32d21 (xi) . (13)

This points to the fact that the mechanical vibratory system has set of physical parameters characteristic of only it.
The characteristic equations are identical to the characteristic polynomial obtained by the method of integral Laplace
transform. The natural vibrations differ by the numerical parameters of their initial conditions.

The right sides of the new system of differential equations are different and characterize the forced vibrations
of a nonconservative mechanical system

D
6
 (xi) = LjLk (Fi) − djkdkj (Fi) + Ljdik (Fk) + dijdjk (Fk) + Lkdij (Fj) +

+ dikdkj (Fj) ,   i ≠ j ≠ k ,   i = 1, 3
___

 ,   j = 1, 3
___

 ,   k = 1, 3
___

 . (14)

Let us write the general system of three independent differential equations of the sixth order in the operator form

− d13d32d21 (xi) = LjLk (Fi) − djkdkj (Fi) + Ljdik (Fk) + dijdjk (Fk) +

+ Lkdjj (Fj) + djkdkj (Fj) ,   i = 1, 3
___

 ,   j = 1, 3
___

 ,   k = 1, 3
___

 ,   i ≠ j ≠ k . (15)
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If i = 1, j = 2 and k = 3, if i = 2, j = 3 and k = 1, and if i = 3, j = 1 and k = 2. This is a Boole permutation.
The system of equations (15) allows one to determine, in explicit form, the constant coefficients of the linear

inhomogeneous sixth-order differential equations:

xi
VI
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IV
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III
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The general dynamic system of vibration isolation, presented in Fig. 1 and described by the differential equations (16),
can be easily analyzed. For this purpose, it is necessary to determine the dynamic transfer functions; the frequency
transfer functions; the amplitude-frequency characteristics; the resonance frequencies; the coefficients of dynamics, dy-
namic rigidity, and dynamic compliance; the stability of vibrations in the mechanism by the Routh, Hurwitz, Nyquist,
and Mikhailov conditions; and adjust it to an optimum operation. For this purpose, we will use the integral Laplace
transform with a complex parameter p at zero initial conditions. The functions Xi(p) and Y(p), i = 1, 3

___
, are Laplace

representations of the originals xi(t) and f(t). In this case, the dynamic system (16) will take the form

(p6
 + ∆5p

5
 + ∆4p

4
 + ∆3p

3
 + ∆2p

2
 + ∆1p + ∆0) Xi (p) = (r5ip

5
 + r4ip

4
 + r3ip

3
 + r2ip

2
 + r1ip + r0i) Y (p) +
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+ d3ip
3
 + d2ip

2
 + d1ip + d0i ,   i = 1, 3

___
 . (17)

The coefficients rmi and dni (m = 0, 5
___

, n = 0, 3
___

) are constant quantities determined by the constants cij, bij, a, and ω,
the values of which are not present because of the awkwardness of the corresponding expressions, and the coefficient
dni is determined by the initial conditions as well as the function f(t) and its derivatives. Let us assume that f1 = f2 =
f3 = 0 and Y(p) = aω/(p2 + ω2). System (5)–(7) is solved using the Riemann–Mellin formula of transformation of the
Laplace transform into the system of equations
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 ,   i = 1, 3
___

 . (18)

The first terms in (18) characterize the forced vibrations of the system and the second terms characterize its natural
vibrations.

The dynamic transfer functions Wi(p) are determined from Eqs. (17) [2]:
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5
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4
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2
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 ,   i = 1, 3
___

 . (19)

It is most interesting to investigate the influence of the polynomials of the first terms in formulas (19) on the vibration
resistance and quality of the mechanical system as a whole. However, the most important information is contained in
the coefficients of the characteristic polynomial of the denominator [5]. The second terms turn to zero when the vari-
able p = Iω (I = √−1) in the expression Wi (Iω) for analysis of the amplitude-frequency characteristics of vibrations



Xi (Iω)


 = a √r4i

2
 (ω2

 − ω∗1i
2 )2

 (ω2
 − ω∗2i

2 )2
 + r5i

2 ω2
 (ω2

 − ω∗3i
2 )2

 (ω2
 − ω∗4i

2 )2

(ω2
 − ωr1

2 )2
 (ω2

 − ωr2
2 )2

 (ω2
 − ωr3

2 )2
 + ∆5

2ω2
 (ω2

 − ωr4
2 )2

 (ω2
 − ωr5

2 )2
 ,   i = 1, 3

___
 . (20)

Here ω∗1i, ω∗2i, ω∗3i, and ω∗4i are antiresonance frequencies and ωr1, ωr2, ωr3, ωr4, and ωr5 are resonance frequencies;
in this case, ω∗1i, and ω∗2i are the roots of the polynomial r4iω

2 − r2iω2r0i = r4i(ω2 − ω∗1i
2 )(ω2 − ω∗2i

2 ), r5iω
5 − r3iω3

+ r1iω = r5iω(ω2 − ω∗3i
2 )(ω2 − ω∗4i

2 ), −ω6 + ∆4ω4 − ∆2ω2 + ∆0 = −(ω2 − ωr1
2 )(ω2 − ωr2

2 )(ω2 − ωr3
2 ), ∆5ω5 − ∆3ω3 + ∆1ω =

∆5ω(ω2 − ωr4
2 )(ω2 − ωr5

2 ). An antiresonance is defined by the amplitude-frequency characteristic corresponding to the
frequencies at which the numerator of dependence (20) is minimum or is equal to zero. In this case, the zero of the
amplitude-frequency characteristic points to an evident resonance and its minimum points to a restricted resonance.

A restricted antiresonance arises at a frequency at which the numerator of dependence (20) is minimum.
When one of the frequencies (real numbers) ω∗1i or ω∗2i is equal to any frequency from the group 



0, ω∗3i, ω∗4i




, the

antiresonance is strong and Xi(Iω) = 0.
A resonance arises when the denominator in formula (20) is close to zero. If only one of the frequencies (real

numbers) 


ωr1, ωr2, ωr3




 is close to 



0, ωr4, ωr5




, the resonance is infinite: Xi(Iω) → ∞; otherwise it is restricted.

The system of vibration isolation, shown in Fig. 1, can be easily transformed into any other system [3] by
removal of unnecessary components. For a rigid base, m0 → ∞; in this case, b00 = 0, b01 = 0, b02 = 0, b03 = 0, c00
= 0, c01 = 0, c02 = 0, and c03 = 0. For the end m2 free at the top (Fig. 1), the mass m3 = 0, c2 = 0, b2 = 0, c3 =
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0, b3 = 0, c6 = 0, and b6 = 0. If the masses m1 and m2 are rigidly connected, M = m1 + m2, c5 = 0, b5 = 0, and x(t)
= x1(t) + x2(t).

For example for the dynamic system of vibration isolation with a viscous friction, presented in Fig. 2, b00 =
b01 = b02 = b03 = b10 = 0, b11 = 20, b12 = 20, b13 = b20 = 0, b21 = 10, b22 = 10, b23 = b30 = b31 = b32 = b33 =
0, c00 = c01 = c02 = c03 = c10 = 0, c11 = 4500, c12 = 800, c13 = c20 = 0, c21 = 1000, c22 = 1000, c23 = c30 = c31
= c32 = c33 = 0, f1(t) = a cos (ωt), f2(t) = 0, f3(t) = 0, and a = 1.

By the form of the characteristic polynomial of the problem

Q (p) = a0 + a1p + a2p
2
 + a3p

3
 + a4p

4 (21)

one can judge the vibration resistance of a mechanical system as well as its vibration-resistance margin and quality or
see that this system does not satisfy the simplest necessary conditions [4]. Such conditions of vibration resistance and
quality of linear radio-engineering systems were formulated by V. S. Voronov in the 1960s of the last century [5]. Un-
doubtedly, these criteria can be extended to linear dynamic systems, the mathematical representation of which is analo-
gous to that of radio-engineering systems with transfer functions in which the denominators represent characteristic
polynomials.

In the example considered, where a0 = 3.7⋅106, a1 = 37,000.0, a2 = 5500.0, a3 = 30.0, and a4 = 1.0, the con-
ditions necessary for the vibration resistance of the system: a0

 ⁄ a2 < a1
 ⁄ a3 < a2

 ⁄ a4 and the conditions sufficient for its
stability: Wk = akak+1/ak−1ak+2 > 1, are fulfilled. A mechanical object used in practice should have any vibration-resis-
tance and quality margins determined from simple relations between the parameters of polynomial (21): Wk > 3 and
Ωk = ak

2 ⁄ ak−1ak+2 > √3 [5]. In the example considered, W1 = 1.8 < 3 and Ω1 = 0.067 > √3 , Ω2 = 27.3 < √3 , and Ω3
= 0.16 < √3 . The vibrations of the vibration-isolation system shown in Fig. 2 are stable; however, this system has no
vibration-resistance and quality margins (Fig. 3).

We now consider a high-quality system. Let us assume that b11 = 200, b12 = 20, b21 = 100, b22 = 100, c11
= 100, c12 = 16, c21 = 80, and c22 = 120. In this case, the characteristic polynomial has the form Q(p) = 10,720 +
30,800.0p + 18,220.0p2 + 300.0p3 + p4 and all the conditions of vibration resistance are fulfilled, i.e., the necessary
conditions: 0.6 < 102.7 < 18,220.0, the sufficient conditions: 174.5 > 1 and 17.5 > 1, the conditions of vibration re-
sistance with a margin: 174.5 > 3 and 177.5 > 3, and the quality conditions: 4.9 > √3 , 36.0 > √3 , and 5.0 > √3  (Fig.
4). Since Ωi ≥ 4 (i = 1, 3

___
), all the roots of the characteristic polynomial (21) will be negative and real and the natural

vibrations will be damped.
The physical model of such a system involves an additional rigid element c4 (Fig. 2) positioned between the

masses m1 and the base m0.
Let us verify if the conditions of parallel and series connection of elements (Fig. 1) are fulfilled [1] in the

mathematical model (5)–(7). It is known that in the case of series connection of springs, e.g., of c2 and c4, the total

Fig. 2. Dynamic system of vibration isolation with a viscous friction.
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rigidity is equal to the ratio between unity and the sum of their reciprocals: 1/(1/c2 + 1 ⁄ c4). Let us assume that all the
damping coefficients bi = 0 (i = 1, 6

___
), the masses m1 = m2 = 0, the rigidities c1 = c3 = c5 = c6 = 0, and the external

loads F1 = F2 = 0 are absent in the system presented in Fig. 1. In this case, the system of equations (5)–(7) takes
the form 0 = −(c2 + c4)x2 + c2x3, m3x

..
3 = c2(x2 − x3) + m3F3. From the first relation we obtain x2 = c2/(c2 + c4) and,

substituting this expression it into the second relation, obtain m3x
.
3 + c2c4/(c2 − c4)x3 = m3F3. Consequently, the total

rigidity of the mechanical system is equal to c2c4/(c2 + c4).
In the case of parallel connection of springs, the rigidities are added. Let us assume that the springs c3 and

c6 are connected in parallel between the mass m3 and the base m0 (Fig. 1), the damping elements bi = 0 (i = 1, 6
___

)
are absent, the mass m2 = 0, m1 → ∞ is connected to the base, the rigidities c1 = c2 = c4 = c5 = 0, and the external
loads F1 = F2 = 0. In this case, the system of equations (5)–(7) is simplified to one equation: m3x

..
3 + (c3 + c6)x3 =

m3F3. The total rigidity of this mechanical system is equal to the sum c3 + c6.
The aforesaid allows the conclusion that the procedure of parallel and series connection of physical elements,

used in the theory of chain dynamic systems or in the impedance theory [1], is performed automatically with mathe-
matical accuracy in the method presented and is involved in the dynamics problem (1)–(4).

The method developed for investigating complex dynamic mechanisms with the use of a sequence of the dif-
ferential operators Li (i = 1, 3

___
) makes it possible to exclude cumbersome mathematical calculations and estimate the

quality of these mechanisms and the stability of their vibrations by the known coefficients of the general mathematical
model (1)–(4). The approach proposed conforms with the method of integral Laplace transformations, the method of
variation of stationary amplitudes, the method of dynamic systems, and the impedance method. Its merit is the possi-

Fig. 3. Amplitude-frequency characteristics of a dynamic spring vibration
damper with a viscous friction and a resonance of vibrations x1(t) at a fre-
quency ω = 28.0 rad/sec (a); time dependence of the amplitude of vibrations
x1(t) at f1(t) = cos (28t) (b).

Fig. 4. Amplitude-frequency characteristics X1(ω) and X2(ω)  that are
practically coincident (a); forced vibrations of the mass m1 with an amplitude
x1(t) at f1(t) = cos (5t) (b).
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bility of determining the desired vibrations of masses and their by solving independent linear inhomogeneous differen-
tial equations. This provides an additional condition for verification of numerical calculations it because allows one to
conveniently represent the vibrations of masses in the phase plane, characterize the form of the phase trajectories, the
type of singular points, and determine the equilibrium position of a mechanical vibratory system.

NOTATION

A, amplitude of vibrations of the external force F, N; a, amplitude of vibrations of the external force related
to the mass m0, N/kg; a0, a1, a2, a3, a4, additional constants; ci, coefficient of elasticity of springs, kg⋅sec−2; bi, coef-
ficient of damping elements, kg⋅sec−1; F, F1, F2, F3, external forces, N; F1, F2, F3, vibration accelerations related
to corresponding masses, m/sec−2; L1, L2, L3, d12, d13, d21, d23, d31, d32, differential operators of the second and first
orders relative to the time parameter t; m0, m1, m2, m3, masses of elements of a vibration damper, kg; ω, frequency
of vibrations of the external force F, rad⋅sec−1; ω∗1i, ω∗2i, ω∗3i, ω∗4i, antiresonance frequencies; ωr1, ωr2, ωr3, ωr4, and
ωr5, resonance frequencies. Subscript: r, resonance.
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